Collocation Extraction Using Monolingual Word Alignment Method
نویسندگان
چکیده
Statistical bilingual word alignment has been well studied in the context of machine translation. This paper adapts the bilingual word alignment algorithm to monolingual scenario to extract collocations from monolingual corpus. The monolingual corpus is first replicated to generate a parallel corpus, where each sentence pair consists of two identical sentences in the same language. Then the monolingual word alignment algorithm is employed to align the potentially collocated words in the monolingual sentences. Finally the aligned word pairs are ranked according to refined alignment probabilities and those with higher scores are extracted as collocations. We conducted experiments using Chinese and English corpora individually. Compared with previous approaches, which use association measures to extract collocations from the co-occurring word pairs within a given window, our method achieves higher precision and recall. According to human evaluation in terms of precision, our method achieves absolute improvements of 27.9% on the Chinese corpus and 23.6% on the English corpus, respectively. Especially, we can extract collocations with longer spans, achieving a high precision of 69% on the long-span (>6) Chinese collocations.
منابع مشابه
Improving Statistical Machine Translation with Monolingual Collocation
This paper proposes to use monolingual collocations to improve Statistical Machine Translation (SMT). We make use of the collocation probabilities, which are estimated from monolingual corpora, in two aspects, namely improving word alignment for various kinds of SMT systems and improving phrase table for phrase-based SMT. The experimental results show that our method improves the performance of...
متن کاملTranslating Collocation using Monolingual and Parallel Corpus
In this paper, we propose a method for translating a given verb-noun collocation based on a parallel corpus and an additional monolingual corpus. Our approach involves two models to generate collocation translations. The combination translation model generates combined translations of the collocate and the base word, and filters translations by a target language model from a monolingual corpus,...
متن کاملSynonymous Collocation Extraction Using Translation Information
Automatically acquiring synonymous collocation pairs such as and from corpora is a challenging task. For this task, we can, in general, have a large monolingual corpus and/or a very limited bilingual corpus. Methods that use monolingual corpora alone or use bilingual corpora alone are apparently inadequate because of low precision or low coverage. I...
متن کاملCollocational Translation Memory Extraction Based on Statistical and Linguistic Information
In this paper, we propose a new method for extracting bilingual collocations from a parallel corpus to provide phrasal translation memories. The method integrates statistical and linguistic information to achieve effective extraction of bilingual collocations. The linguistic information includes parts of speech, chunks, and clauses. The method involves first obtaining an extended list of Englis...
متن کاملLarge - Scale Automatic Extraction of anEnglish - Chinese Translation
We report experimental results on automatic extraction of an English-Chinese translation lexicon, by statistical analysis of a large parallel corpus, using limited amounts of linguistic knowledge. To our knowledge, these are the rst empirical results of the kind between an Indo-Europeanand non-Indo-Europeanlanguage for any signiicantvocabulary and corpus size. The learned vocabulary size is abo...
متن کامل